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I. INTRODUCTION 

Multiple-scale problems are the norm rather than the excep- 

tion in geophysical flows, and the problem to be described here 

is of this type. In particular, we consider the scenario con- 

sisting of a planetary-scale topography and a baroclinic zonal 

basic flow for which the most unstable perturbations are synop- 

tic-scale. It has been determined, e.g., by Fredericksen 

( 1 9 7 9 ) ,  Blackmon (1976) ,  and Blackmon, et.al. (1977) ,  that in 

the Earth's atmosphere, there are regions of preferential 

development of synoptic-scale baroclinic eddies that are depen- 

dent on planetary-scale waves. Fig. 1.1 shows the relationship 

between the Northern Hemisphere oceans and continents, the 

time-averaged 500mb circulation and bandpass-filtered baro- 

clinic heat-flux data and suggests that the maximum baroclinic 

heat flux occurs j u s t  downstream from the trough axes of the 

planetery-scale waves, which are located near the eastern edges 

of the continents. The latitude of maximum heat flux also 

varies, being closer to the equator near the eastern edges of 

the continents than further downstream. 

In the atmosphere, there are two major forcings by which 

the planetary-scale waves may arise: a thermal drive, due to 

land-sea contrasts, and a mechanical drive due to topography. 

1 
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Figure 1.1 a) The 500mb average geopotential height in 
meters for 9 winters, after Blackmon(l976), and b) the 2-5 day 
band-pass filtered transient eddy heat flux at 850 mb for this 
period, after Blackmon, et al. (1977). 
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Evidence for the importance of topography in maintaining the 

ultra-long waves is given in Tibaldi and Buzzi (1983); the dis- 

cussion in this study is limited to the effects of topography. 

Early dynamical studies of the effect of topography on a 

flow field were performed for basic states with no zonal flow 

at the surface, and only disturbances of a single wavenumber, 

equal to that of the topography, were considered. These 

studies have resulted in the discovery of barotropic topo- 

graphic instability by Charney and DeVore (1974), and Hart 

(1979),  and extensions to baroclinic situations by, e.g. Char- 

ney and Straus (1980) and Pedlosky (1981). In the study of 

Charney and Straus (1980), a severely truncated two-layer spec- 

tral model with driving and dissipation yields, among the eig- 

ensolutions, a mode which grows in place and other modes which 

are travelling. The height of the topography must be greater 

than a critical value for the stationary growing mode to arise. 

This orographically unstable mode, which draws energy from the 

zonal flow due to its temperature-phase relationship, is pro- 

duced by the form drag and therefore Charney and label 

this instability the "form-drag instability". The travelling 

modes are of the Eady type modified by topography; i.e., they 

are present in the limit of no topography, and are called the 

baroclinic modes. 

Straus 

Pedlosky (1981) solved the problem of a quasi-resonant flow 

the presence of topography using weak nonlinearity for both in 
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barotropic and baroclinic flows. Stationary Rossby waves are 

resonant with a stationary forcing, which is provided by topog- 

raphy through the form drag (Rambaldi, 1982). Pedlosky (1981) 

considered a flow which is slightly off resonance, in which a 

very small topography is present. He otherwise did not sev- 

erely truncate the model, as in Charney and DeVore (1979) ,  or 

restrict his attention to a strongly anisotropic topography, as 

in Hart (1979) ,  but proceeded with the analysis valid for a 

special ordering relationship for topographic height and dissi- 

pation in terms of a parameter which is small under quasi- 

resonant conditions; namely, the speed that a Rossby wave would 

have if topography were absent. He found that some flows that 

are baroclinically stable in the absence of topography exhibit 

topographic instability. The instability can be obtained for 

arbitrarily small shear, but the width in parameter space of 

the unstable region is inversely proportional to the shear. 

A number of studies have been concerned with the combined 

baroclinic/topographic problem. A recent example is the study 

of Nathan (1985), who has extended the model of Pedlosky (1981) 

by considering a weakly nonlinear problem in which a wavenumber 

n is orographically unstable and wavenumber n+l is baroclini- 

cally unstable, with comparable growth rates. He demonstrates 

the importance of internal dissipation in determining the non- 

linear evolution of the flow. Attractive features of Nathan's 

analysis are the explicitness of the dynamical relationships 
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obtained and the absence of ad-hoc truncation. Two weaknesses 

of his approach are the requirement for special ordering rela- 

tions between the topography height and other parameters, and 

the lack of scale separation between the orographic and baro- 

clinic wavenumbers. 
1 

The major purpose of this study is to find the linear 

response of the model in the presence of baroclinic instability 

and topography. We will attempt to replicate the parameter set- 

tings for the atmosphere, and more particularly, the annulus. 

We consider the linear baroclinic/orographic instability prob- 

lem in which the coupling of various wavenumbers by the topog- 

raphy can be significant. In contrast, the topographic effect 

on the linear problem in the studies of Pedlosky (1981) and 

Nathan (1985) was not studied explicitly, but brought in at the 

same order as weakly nonlinear effects. The eigenvalue for our 

problem is a complex frequency, and the eigenfunction can be 

approximated by a truncated sum of components of various wave- 

numbers. Linear investigations of this type of flow have been 

done by DeSzoeke (1975, 1983) andby Durney (1977) for an infi- 

nite f-plane or beta plane, with application to the ocean 

mesoscale dynamics. Although the atmosphere allows significant 

meridional wave propagation, we find it useful to consider the 

case in which the baroclinic instability is confined; hence, we 

choose a channel domain. The atmospheric studies cited above 

include a sin ry topography. Our analysis is simplified, in 
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order to bring out the relevant physical mechanisms, if the 

topography is independent of the meridional coordinate. 

The channel model results also are compared with the 

results of the recent laboratory experiments of Li, et a1 

(1986), to be referred to hereafter as LKP. Their discussion 

focuses on an experiment run for a choice of thermal Rossby 

number and Taylor number for which wave number 6 dominates the 

flow field when topography is absent. The inclusion of radial- 

ly-independent, wavenumber 2 topography results in the oscilla- 

tion of wavenumbers 4 and 6 at a single frequency. Fig. 1.2 

also shows a wavenumber 2 disturbance whose phase position of 

the trough or ridge oscillates from -15 deg to -45 deg and 

whose amplitude is nearly constant, but exhibiting a frequency 

twice that of the phase oscillation. The theoretical results 

to be presented here show a somewhat smaller mean displacement 

of the trough or ridge and also a somewhat smaller excursion. 

The tendency for strong cyclones downstream of the topographic 

ridge, with high pressure dominating upstream of the topogra- 

phy, was also reported by LKP. The results to be presented 

here are consistent with this finding. The streamfunction 

fields of LKP are describable kinematically as the sum of a 

stationary wavenumber 2 component forced by the topography and 

a travelling disturbance of dominant wavenumber 4 ,  which con- 

tains also some wavenumber 2 and wavenumber 6 dependence. The 

oscillation of the phase of the wavenumber 2 field requires the 
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from ro ta t ing  annulus experiments with y -  independent topogra- 
phy, a f t e r  Li ,  e t  a l .  (1986) .  
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amplitude of the stationary wave to be larger than the wavenum- 

ber 2 component of the travelling wave. 

The hypothesis of this study is that the flow field of LKP 

is the sum of a stationary wavenumber 2 component and a time- 

dependent wavenumber 4 component. The stationary wavenumber 2 

component could result either from topographic forcing due to 

the presence of a nonzero basic-state zonal velocity at the 

height of the topography, or it could arise spontaneously due 

to topographic instability. The latter scenario would require 

the stationary wave to survive in a finite-amplitude equilibra- 

tion. No unstable stationary eigenmodes are found for the 

relevant region in parameter space; hence the model formulation 

allows for a nonzero zonal velocity in the lower layer, result- 

ing in a stationary forced wave. The time-dependent distur- 

bance observed in the experiments is presumed to be the finite- 

amplitude equilibration of a single eigenmode of a linear baro- 

clinic problem, whose dominant wavenumber is 4 .  

In the parameter ranges of relevance to the atmosphere and 

the experiments of U P ,  the topography introduces only a 

"slight" modification of the time-dependent flow field; hence, 

this problem can be solved by perturbation methods. The devel- 

opment of the so-called asymptotic model and its results are 

described in chapter 3 .  A numerical eigenvalue approach, 

described in chapter 4 ,  is valid for flows in which the topog- 

raphy effect is larger. The asymptotic model is found to agree 
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well with the numerical model concerning the growth rate and 

the spatial structure of the most unstable modes. 

The discussion focuses on the hypothesized reconstruction 

of the flow fields of LKP in terms of the stationary, forced 

and travelling, free disturbances, and on the comparison of the 

results of the numerical eigenvalue method with the asymptotic 

model results. 

t 

t 



11. FORMULATION AND STATIONARY WAVE SOLUTION 

We used the two-layer quasigeostrophic model to investigate 

the Boussinesq flow over topography in a beta-plane channel. 

The problem is formulated for the case of an arbitrary lower- 

layer basic-state velocity, which induces a forced wave if it 

is nonzero. The assumption of quasigeostrophy implies that the 

Rossby number is small. A second small parameter related to 

the topographic height could be introduced; we take the nondi- 

mensional topography height to be of order Rossby number. 

The quasi-geostrophic equations are developed in the clas- 

sical fashion (Pedlosky, 1979; chapter 6 ) .  The scaling is as 

follows : 

(X*,Y*) = L(x,y), 

t* = L/u* t, 

Z* = H Z, 

e* = eS(z) (1 + RO F, e ) ,  

P* - PS(Z) + P,U*fOL p(x,y,z,t), 

P* P S  + Ro Fe ~(x,y,z,t), 

B = Bo L2/ u*, 
where * denotes dimensional variables. The channel width is L, 

and a wavenumber one wavelength is 2nL. The (external) rota- 

tional Froude number and the Rossby number are defined by 

10 
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Fe - fo2L2/gH, 
RO = U*/fOL , 

and the Coriolis parameter as 

Dissipation is present in the form of top and bottom Ekman 

layers, with Ekman numbers given by 

En = 2 vn/ f H2 n=1,2 ( 2 . 3 )  

where vn are the eddy diffusivity coefficients. The 

dissipative coefficients rn are 

rn - En1/2/(2 Ro) . ( 2 . 4 )  

We choose our parameters to be of relevance to the atmo- 

sphere, as in Table 2 . 1 .  

Gates (1961) gives numerical values for N2 - ge-l(Ae/D) for 

the layer 750 mb to 250 mb, where D-H/2 is the depth of a 

layer. If we average the data from his Table 1 from 1000 mb to 

200 mb, we obtain a value for N of .019 ( . 0 1 3 )  sec-l for the 

winter (summer). The Rossby deformation radius LD, given by 

LD = ND/fO, ( 2 . 5 )  

equals 700 km in winter and 570 km in summer. Then the Froude 

number F = (L/LD)2 equals 40 in winter and 60 in summer. In the 
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Table 2.1: Parameter values for the planetary scale 

Parameter Atmospheric Value Annulus Value 

L 

u* 
H 

D 

f0 

g 

BO 

4 . 5  x lo6 m 

10 m sec-l 

104 m 

5 x lo3 m 

10-4 sec-1 

7.5 cm 

.14 cm sec-l 

8.3 cm 

4 . 2  cm 

4.09 sec-l 
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annulus, the Brunt-Vaisala frequency for an imposed 2 deg K 

temperature difference and with the thermal expansivity coeffi- 

cient equal to 1.05 x (deg K)-I is found to be N = .5 

sec-l The resulting deformation radius is about 1 cm, for 

which F - 5 6 .  Since wavenumber 4 is observed to be the dom- 

inant wavenumber of the flow with topography, we will consider 

the case of F-35 for which the minimum critical shear is found 

at k-4 when topography is absent. 

If the Ekman number for the atmosphere is taken to be .001 

(.0001), then r2 is approximately .65 ( . 2 ) .  In the annulus, 

the Ekman number at the point of interest in parameter space is 

equal to about 2.2 x yielding r2 =. 1.5. The experiments 

of LKP had a free upper surface, in which case r2 would be 

zero. However, for simplicity, we set the upper and lower dis- 

sipations equal. 

The governing equations, in non-dimensional form, are the 

conservation of quasi-geostrophic potential vorticity equations 

in the two layers (Pedlosky (1979), chapter 6 ) ,  

In eq. ( 2 . 6 )  p1 and p2, the pressures at each level, acting as 

streamfunctions, are of the leading order in Rossby number; the 
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total time derivative Dt is defined as 

with the appropriate value of n being taken in each layer. 

The (internal) Froude number is defined by 

F = fo2L2/N2D2, ( 2 . 7 )  

where N is the Brunt-Vaisala frequency, given by 

N2 a gAp/(pD)J ( 2 . 8 )  

and the nondimensional topography height is defined as 

In general, q is a function of x and y, but in this study, 

we shall consider the case of q being a function of x only. 

The harmonic analysis of the Earth's topography by Peixoto, et 

al. (1964), points to a dominance of wavenumber 2; however, 

they find significant contributions by odd wavenumbers as well. 

In this study we restrict our attention to topography of wave- 

number 2; i.e., we write 

q = 2 ho COS(~X); (2. l o )  
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this choice is motivated, in part, in view of the simplifica- 

tion in the modal interactions and also because the experiments 

of U P  showed much simpler flow patterns in this case. 

The value of ho for the annulus using (2.9) and (2.10) is 

large, on the order of 20. There are several reasons why one 

might expect the effective topography height to be smaller. 

topographic slope should be scaled to the average radius of 11 

cm rather than the gap width of 7 . 5  cm. One could also specu- 

late that cold pools of fluid, decoupled from the rest of the 

fluid, may sit in the topographic troughs. (Detailed thermal 

analyses of the experiments of U P  have not been done.) A l s o ,  

the vortex stretching due to the topography is dependent on the 

velocity at the surface, which is smaller than U*. In view of 

these considerations, it is reasonable to set ho/F to 1/7;  

i.e., ho = 5 for the annulus, a value we will later show to be 

suggested by the experimental data. 

The 

The boundary conditions are given by 

where the ( ) denote an average over x. 

The pressure field is written as a sum of a basic state 

and a perturbation. The basic state is a westerly current in 

each layer. We write p1 and p2 as 



(2.12) 

in which there is present a stationary wave, represented by dnS 

and of scale AS, and a travelling wave represented by dnt, 

whose scale At is infinitesimal. 

Substitution of (2.11) into (2.10) yields the equations 

and 

with 

dms=dmt=(dnytt)=O at y - 0,l. 

The time-independent equations are 

(2.15) 
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I 

with 

4nxs=0 at y - O,1. (2.18) 

There is no lateral boundary condition for the zonally-averaged 

steady flow; however, the specification of the basic-state 

zonal velocities would imply (4,”) is constant across the 

domain. Without loss of generality we choose that constant to 

be zero. 

The relative sizes of the terms of equations (2.16) and 

(2.17) are given in Table 2.2. Term 4 of (2.17) is the for- 

cing, which can balance any of a few other terms. If term 5 is 

important, then q5zS is a sum of components of even wavenumbers. 

A coupling of zonal harmonics also occurs when the nonlinear 

term 2 is important. We consider the case where terms 3 and 4 

balance. We assume that we can ignore term 2 of eq. (2.16) and 

terms 2 and 5 of eq. (2.17). This assumption, which we shall 
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Table 2 . 2 :  Relative sizes of the terms of equations (2 .16 )  and 

(2.17), after dividing through by F. Numerical values of terms 

in (2.17) are given for the case U 1  = 1, U2 = . 3 ,  ho/F = .07, 

r2/F - .03 for the atmosphere, and the case U1 = 1, U2 = . 3 ,  

ho/F - .15, r2/F = .03 for the annulus. 

Term (2 .16 )  (2 .17)  atmosphere 

1. U 1  u2 .4 

2.  AS AS .2 

3 .  u1 -u2 *1-u2 1 

4 .  rl/F 4U2ho/ (FA’) 1 

5 .  4 ho/F .4 

6 .  q/F . 02  

annulus 

. 3  

. 2  

1 

1 

. 6  

.025 
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call Assumption A ,  is strictly valid only when AS is small. 

Although r2/F is small, r2 is important for determining the 

phase, which is determined by the relationship between dissipa- 

tion and advection by the basic-state velocity. 

If the stationary wave is written as follows: 

then we obtain two pairs of equations: 

f d2 1 

I 

I 

with 

blf = b2+ 

at y - 0,1, where 

(2.20) 

(2.21) 

(2.22) 

(2.23) 



2 0  

We combine equations (2.20) and (2.21) into a single 

fourth-order equation: 

with boundary conditions 

r d2 1 
(2.25) 

at y - 0, 1. The solution is given by 

where 

and where 



The plots of 4nS/(ho/F) for F - 35, rn - 1.5, shown in Fig. 
2.1, for n equal to 1 and 2, feature an upstream shift of the 

ridge (trough) of dnS from the topographic ridge (trough) 

positions. The phase shift is -10(-15) degrees for the lower 

(upper) layers, a somewhat smaller phase shift than the average 

position of the wavenumber 2 component of LKP. of the wavenum- 

ber 2 component in LKP. 

The terms in equations (2.13)-(2.15) that are linear in At 

yield the following set of equations: 

where stationary and time dependent potential vorticities qns* 

are defined by 



trough 
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ridge 

I 
trough 

Figure 2.1 The order ho/F stationary flow of wave number 2 
resulting from the interaction of the lower layer basic-state 
zonal flow with topography, for U1=l, U2=.15, F=35, p=O, and 
rl=r2=1.5. 



(2.31) 

We define the complex streamfunction amplitude dnt by 

for n=1,2. The lower velocity U2 is taken to be order 1, since 

if U2 were less than order i, tne ampiitucie ns of dnS wouid not 

be large enough to cause the oscillation in the wavenumber 2 

phase obtained by LKP. Then, the governing equations and 

boundary conditions become 

(2.33) 

and 

with 

$==($ )-O at y=O,1. "Yt 

(2.34) 

(2.35) 
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It is convenient to eliminate $1 in favor of $2 and obtain a 

single equation for $2, viz., 

The standing wave complicates the analysis by introducing 

y-gradients into the equation for $n. If it were not for the 

boundary conditions, dns would by y-independent. 

q5nS in Fig. 2.1 show the y-gradients to be the largest near the 

boundary. We parameterize dnS by considering it to be 

independent of y. We take the amplitude of dnS to be .9 times 

the midstream amplitude given by (2.26): 

The plots of 
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The choices of the parameters ho/F and U2 for subsequent 

analysis are obtained using the experimental data. The lower 

layer velocity scale from the experiments is about .04 cm 

sec-l. specified ratio U2/U1 is listed in row 1 of Table 

2.3. For these specified ratios, the magnitude of AS42’ is 

obtained from the stationary wave solution. The terms AS42’ 

and Atqj2t are obtained from the observations, and As42s/(ho/F>) 

is obtained from the stationary wave solution. The upper layer 

velocity is computed and these quantities are rescaled so that 

the upper layer velocity is one unit. These rescaled quanti- 

ties are listed in rows 3-5. The rescaled observed amplitude 

excursion is shown in row 6 .  The parameter ho/F is determined 

and listed in row 7 .  The anticipated wavenumber 2 phase oscil- 

lation, obtained from the theory, is of order (h0/F)A~q52~, and 

is listed in row 8. Note that a comparison of the observed 

versus theoretical values of the phase oscillation; i.e., rows 

6 and 8, would yield agreement for U2a.15, for which ho/F is 

equal to .15. 

The 

The excursion in phase, obtained by means of a kinematic 

addition of a standing and time-dependent wave 2 ,  4 can be com- 

pared with the experimental results shown in Fig. 1.2. If we 

write 

42 = As COS (2x+BS) + At(ho/F) cos[2x-~~t+B2], (2.39) 

then we find that 
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Table 2 . 3 :  The magnitudes o f  some observed  and t h e o r e t i c a l  

q u a n t i t i e s  as a f u n c t i o n  o f  U2/U1. 

1. U2/U1 ( s p e c i f i e d )  .1 . 2  . 3  .4 . 5  

2 .  AS42,/(ho/F) ( t h e o r .  ) .25  . 5  .8 1.1 1 . 5  

3 .  Rescaled As42s .015 .03 .05 .06 .09 

4 .  Rescaled At42t .02 .04 .06 .08 .11 

5 .  Rescaled AS&J(ho/F) .08 . 3  .8 1 . 5  2 .5  

6 .  Rescaled t r a n s i e n t  
wavenumber 2 ( o b s . )  .003 .007 .01 .015 .02 

7 .  Derived ho/F . 2  .1 .07 .04 .03  

8 .  ho/F At42t ( d e r i v e d )  .004 .004 .004 .003 .003 



4 - cos [2x+x], 
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(2.40) 

where x is given by 

tan (wrt/2) . (2.41) 1 AS-At (hg/F) 

AS-At(ho/F) 
x = -wrt/2 + tan- 

The maximum of tan x occurs for 

(2.42) 

which is approximately 1/5. This yields a value of x equal to 

approximately 11 degrees, which is on the order of 25 percent 

smaller than the 15 degree excursion illustrated in Fig. 1.2. 



111. ASYMPTOTIC MODEL AND RESULTS 

We consider the case in which a baroclinic flow is modified 

by a very small wavenumber 2 topography; i.e., a planetery 

scale topography. We start with Eqs. (2.23)-(2.25), assuming 

that the zonal wavenumber of the leading order solution, which 

represents a synoptic-scale baroclinic wave, is different from 

0 or 2. The governing equations are 

(3.1) 

with boundary conditions 

at y = 0, 1. 

We shall use perturbation methods to solve this set of 

28 
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equations for a small topography. 

of ho/F; i.e., 

We expand $n and w in terms 

The streamfunction 3, represents a wavy flow at leading order 

and at order ho/F. If the wavenumber of the leading order 

problem is 4, there will be a zonally-averaged flow at order 

(ho/F)2. This component does not affect ~ ( 2 1 ,  for in the 

determination of ~ ( ~ 1 ,  the application of the solvability 

condition involves a projection onto the baroclinic wave of 

wavenumber 4. 

The leading order problem is the ordinary baroclinic insta- 

bility problem without topography. For the two-layer Phillips 

(1954) model, that problem is described in Pedlosky (1979), 

chapter 7 ,  and is given by Eq. (2.16)-(2.18) with 7-0. One can 

write, in view of the boundary conditions, 

which yields a pair of coupled algebraic equations for the 

amplitudes of the two layers. The simultaneous nontrivial 

solution of these requires a determinant of the coefficients of 

A 1  and A2 to vanish, yielding the dispersion relation: 
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u(O) - k[U2+1/2(c+-ia' f [C,2-2i~C+ - Q ' ~  + 4~]~/~)], 

(3.5) 

where 

C+ Us - 2,9(K2+F)/[K2 (K2+2F) ] , 

c- = (U2K4 (K4 -4F2)+4B2F2 1112/[K2 (K2+2F) ] , 

K2 - k2 + R2z2, ( 3 . 6 )  

a' = (K2+F)(rl+r2)/[k(K2+2F)], 

Q = (r lr2K2- ik[r2(P-UsK2)+rl (B-FU,) l ) / [k2(K2+2F)] ,  

us = u1 - u2. 

Since this is a linear problem, the amplitude is arbitrary 

and we set A2-1 and A 1  - 7, where 7 is given by 

r - 1+K2/F + [r2iK2+(p-FUsk]/(Fu(o)). (3 .7 )  

The phase lag I' between the lower and upper layers is 

defined by 

In the case ,9-0 and rl=r2=r, the critical value of Us; 

i.e., the value for which the waves are marginal, is given by 

uc - (2r/k) K/(2F - K2)ll2, (3.9) 
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ucr i t,h =O 
L 
N 
\ -+ .- 
L 
0 
3 

0. 2. 4. 6 8. 
k 

Figure  3 . 1  The c r i t i c a l  s h e a r ,  Uc/2r,  as a f u n c t i o n  o f  
z o n a l  wavenumber, w i thou t  topography, f o r  F=35 and U2 = - 1 5 .  
The minimum c r i t i c a l  s h e a r  and t h e  s h o r t  wave c u t o f f  a r e  
l a b e l l e d .  
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for which the square root term in eq. (3.4) balances the nega- 

tive imaginary term proportional to r that results from the 

Ekman dissipation. Fig. 3.1 shows a plot of Uc/2r as a func- 

tion of k, which is valid only if 2F is greater than .12n2. If 

k is greater than (2F-R2n2)1/2, no amount of shear will result 

in an instability. A minimum critical shear of (J(2F)-ln)-1 is 

realized for k2-R7r(J(2F)-P7r). For F = 40(60) and R = 1, the 

minimum critical shear is found at k - 4(5). The positive root 

in Eq. (3.4) represents a perturbation with a westward tilt of 

the troughs and ridges with height, as shown in Fig. 3.2 (for 

t-0, k-5, 8-0, F-35, and rl = r2 = 1.5), which allows the 

perturbation to extract energy from the basic state. Marginal 

stability occurs when dissipation is large enough to balance 

the energy extracted from the basic state. We select k-4 and 

1-1 to represent the synoptic-scale wave. 

At order ho/F, we have the governing equations 

(3.10) 

and 

I 
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I 

Figure 3.2 The streamfunction for k-5 without topography 
with /3 = 0, F - 35, and r1 - r2 - 1.5, at time t=O, for the two 
layers, with U1 = 1 and U2 = .15. The region shown is the 
half-domain - R / ~ s x I A / ~ ,  0 ~ y S l .  



with 

(3.12) $= ( ) =( $nyt ( ) -0 

at y-0,l. 

The order ho/F governing equations are composed of three 

terms: 1) the leading order operators acting on the perturba- 

tion $*(I), 2) the order ho/F operators acting on $2('), which 

is proportional to the order ho/F eigenvalue correction, and 3 )  

the order ho/F operators due to the topography and the standing 

wave, which act on the leading order solution. 

In order to find ~ ( ~ 1 ,  we apply a solvability condition; 

specifically, that any solution to this equation must be ortho- 

gonal to the adjoint of the solution of the leading order prob- 

lem. One can see intuitively, and it is shown formally in 

Appendix A ,  that is zero, since the replacement of ho by 

-ho in the equations merely shifts the phase of the topography 

by 180 degrees. 

With - 0, after combining Eqs. (3.10) and (3.11) into 
and a single equation, we obtain a forced equation for 

the solution $2(') has the form 

$2('), 
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One solve for g2+ by substituting ax - i(E2:) into (3.10) 
and (3.11), solving in terms of the lower-layer streamfunction, 

and obtaining a pair of fourth-order ordinary differential 

equations in y: 

can 

with boundary conditions 

(3.14) 

(3.15) 



(3.16) 

The solutions to these fourth-order ODE’S are given by 

g2+ = al+cos X++(y-1/2) + a2+sin X+-(y-1/2) 

+ a3+cos X+-(y-1/2) + aq+sin X+,(y-1/2) 

+ a5+ cos Rny, 

(3.17) 

where the % are constants which must be determined and 

A’s are roots of the characteristic quartic equation, which can 

the 

be found as: 
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(3.18) 

We can find g1+ - from g2+ - by substituting into the 

governing equation (2.17). 

lower layer 

The functions gn+ and gn, are symmetric about y - 1/2, 
which requires that al+ - al- - a3+ - a3- = 0 for R odd and a2+ 

= The specific details of the 

coefficients 

a2- - a4+ =. a&- = 0 for R even. 

are given in Appendix B. 

The time-dependent streamfunction field $,(I) (x,y) is a 

superposition of Fourier components of zonal wavenumber E 2 .  A 

plot is given in Fig. (3.3) for k-5, 1-1, for O l x l n ;  i.e., for 

one "period" for the topography. The functions g2+ have a node 

at y - 1/2, because $*y(o) = 0 there. 

- 

It is instructive to write the functions g d ' s  as 

g d ( y )  - G,+(y) exp(i d d ( ~ ) ) .  (3.19) 

It was found that 8,+ are nearly independent of y, varying 

approximately .05x across the y-domain. The upper and lower 

streamfunctions $1 and $2 are constructed to order ho/F and are 

given by 
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ridge 
G 

trough 
3 

Figure 3.3 The order ho/F portion of the transient flow, 
for ho = 5 and parameters otherwise as given in Fig. 3.2. 
Positions of the topographic trough and ridge are shown. 



42 - exp(wit)(sin 17ry cos(kx-w,t) 

+ ho/F G2+(y)co~[(k+2)~-o,t+62+] 

+ ho/F G~-(Y)cos[ (k-2)x-+t+B2-11, (3.20) 

where wr + i w i .  

It is useful to write the order ho flow as a propagating 
wave of wavenumber k that is modulated by a standing wavenumber 

2 pattern. Then,up to order hg/F, the total flow field at a 

fixed latitude can be viewed as an interference pattern between 

the The upper streamfunction $2 is 

written as 

order 1 and order ho flow. 

41 - cos(kx-wrt-r) exp[wit] (sirdry +ho/F h l ( y )  cos[2x-~l(y)]) 

+ ho/F sin(kx-wrt - r) exp[wit] hl(y) sin[2x-~l(y)], 

(3.21) 

where 
I 

c 
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and where l? is defined in eq. (3.8). Likewise, the lower layer 

streamfunction is given by 

I 

(3.25) 

and 

At longitude 2x = xn, the order ho flow in layer n adds 

constructively to the order 1 flow, and at longitude 2x - xn+r 

is found a destructive interference. Since the order ho 

streamfunction is antisymmetric for R = 1, the interference 

pattern for the south half-domain Osy<1/2 is shifted by 7~/2 

from the north half-domain 1/2<ysl. The functions and xn 
are plotted in Fig. 3.4. On each side of the mid-channel lati- 

tude, the function xn is nearly independent of y. The lower 

layer amplitude A2 is a maximum at y-1/4 and y=3/4, and the 

upper layer amplitude maximum is slight.ly further from the mid- 

channe 1. 
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Figure 3 . 4  Amplitude (A,) and phase (x,) of constructive 
interference between order 1 and order ho/F solutions, for 
layers n=l and n=2, as a function of y - 1/2. For O<y<1/2, we 
note An(l/2-y) = AN(1/2+y) and xn(1/2-y) = xn(1/2+y) *'IT. 
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The total time-dependent flow field, shown in Fig. 3.5 for 

times wrt - 0, 7r/2, A ,  and 31r/2, is a procession of highs and 

lows whose centers meander as they move east, on a track whose 

position is constant in cime. For the lower layer, the furthest 

south excursion is found at about x-x/3 and the furthest north 

excursion is found at about x=-A/~. The amplitude is smaller 

for the upper layer, and the furthest north excursion is 

slightly upstream of the topography ridge, and the furthest 

south excursion near the trough. 

One might interpret che avoidance of the low latitudes near 

x = -7r/6 as the presence of a "blocking ridge", immediately 

upstream of the topography ridge. This feature of the results 

is similar to those of U P .  However, LKP found also a strong 

longitudinal dependence of the strength of the highs and lows; 

only a weak variation in strength was found for the time- 

dependent solution alone. The addition of the stationary wave 

yields a stronger longitude dependence in the amplitude of the 

wave. 

In the atmosphere, Fig. l.lb, after Blackmon et al. ( 1 9 7 7 ) ,  

suggests that the main storm track in winter is further north 

upstream of the continents than it is downstream. Although the 

relationship between the path of the cyclones and anticyclones, 

the eddy heat flux, and the time-mean circulation was noted in 

the Introduction, it is interesting that the storm track is 

very evident in Figs. 3.5 and 4 . 3 ,  while there is very little 

I 
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trough ridge trough ridge trough 

i 

upper lower 

Figure 3.5 The streamfunction 4: for layers n=1,2, 
computed for times wrt = 0, 7r/2, R ,  and 37r/2, using the 
asymptotic model. Only the half of the domain -7r/25%7r/2 is 
shown. Topographic ridge and trough positions are shown by 
arrows. 
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longitude dependence of the intensity of the waves, and the 

most unstable mode, divided by the exponential growth factor, 

has a zero time mean; i.e. the time-averaged circulation is 

simply the zonal basic state. We have demonstrated the possi- 

bility that storms follow a meandering path without the pres- 

ence of a wave in the time-mean circulation. 

A t  order (ho/F)2 we find the lowest order eigenvalue correc- 

tion, which is given for the case of U 2  - 0 by 

( 3 . 2 7 )  

where I and I' are integrals given in Appendix A. The results 

for arbitrary U2 are also given in Appendix A. These integrals 

are obtained by writing the order (ho/F)2 equations and 

applying the solvability condition, for obtaining an expression 

for u ( 2 ) .  The streamfunction $,(*I at that order has 

components of wavenumber k, k+4, and k-4; only the component of 

wavenumber k contributes. 

The marginal stability curve was computed from this small 

topography perturbation analysis by choosing F and finding the 

critical dissipation Uc using a Newton's iterative method. A 

quantity AUc which is the percent difference between U, for 

topography height ho - 5 and Uc for no topography is plotted 
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dlt ucrit.rnt-nonc4 

Figure 3 . 6  The percent change in the critical shear Uc as 
a function of dominant wavenumber k due to the presence of 
topography, with F = 35,  = 0 ,  r1 = 1-2 = 1 . 5 ,  and ho = 5 .  The 
solid curve is computed using the asymptotic model, while the 
circles are obtained from the numerical. No data is obtained 
at x=2 since the asymptotic model results are invalid there. 
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as a function of k in Fig. 3 . 6 ,  for a fixed F - 3 5 .  A nega- 

tive AUc implies destabilization. It can be seen in Fig. 3 . 6  

that the topography destabilizes the flow near the short-wave 

cutoff for each given wavenumber. 

The time-dependent equilibrated amplitude was chosen to be 

equal to .025, the magnitude the rescaled Atq52t term from table 

2.3 would be when U 2 / U 1  is equal to .15. 

The sum of the time-dependent field and the stationary wave 

field, shown in Figure 3 . 7 ,  reveals a prominent standing wave 

of wavenumber 2, with a less prominent wavenumber 4 pattern 

superimposed on it. The combination of the topography and the 

parameterized standing wave acts as an effective y-independent 

topography in both layers. Physically the meandering of the 

storm tracks is a result of the antisymmetry of the vortex 

stretching about the middle of the channel due to the interac- 

tion of the effective topography with the u-velocities associ- 

ated with the leading-order disturbance. The antisymmetry is 

masked in the total wave field due t,o the presence of the 

larger stationary wave. 

A tendency toward high pressure immediately upstream of 

the topographic ridge and low pressure downstream is evident 

after the addition of the stationary wave component. The phase 

of this feature relative to the topography agrees qualitatively 

with the similar features of the atmosphere and the laboratory 

experiments. 
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Figure 3.7 The wave streamfunction field, including both 
the time-dependent and stationary flow fields for various times 
as in Fig. 3.5. 
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m e  antisymmetry of the wavenumber 2 time-dependent solu- 

tion about the middle of the channel yields a difficulty in the 

interpretation of the phase oscillation of the wavenumber 2 

component. According to the theory presented here, the phase 

oscillation should be zero at the middle radius and a maximum 

at y-.25 and y-.75. The observed magnitude of the phase oscil- 

lation is nearly independent of the radius. Some of the sim- 

plifications in the theory, for example the lack of a station- 

ary wavenumber 4 component and the parameterization of the sta- 

tionary wave solution may be responsible for this discrepancy. 

I 



IV. NUMERICAL APPROACH AND RESULTS 

I 

4.1 Formulation: 

More general results, i.e., results which are still 

obtained from a truncated model but one in which we relax some 

of the smallness restriction on ho, can be found by numerical 

methods. The numerical approach in this study was used only 

for the time-dependent problem. The parameterized stationary 

wave solution, forced by the topography in the presence of U2, 

defines a coupling of the various Fourier components in a man- 

ner similar to the topography term. In contrast, many other 

studies, for example, Pedlosky (1981), consider only a zero 

lower layer basic state velocity. We use Assumption A 

described in Chapter 2 ;  namely, assuming the stationary wave 

parameterization to be valid f o r  arbitrary ho/F. In this study 

the main purpose of the numerical approach is for comparison 

with and validation of the asymptotic time-dependent model 

results presented in Chapter 3 .  

We define q5n as 

Q) a0 

q5n = 1 {a0ln cos 1ry + 1 exp(ikx) akin sin 1lry) 
1-1 k--m (4 .1 )  

49 
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and we recall that 

9x = - 4 ho sin 2x. (4.2) 

We substitute the above expressions into eqs (2.20) and get 

for the zonally-averaged flow the following equations, 

and for each zonal nonzero wavenumber k, we obtain the follow- 

ing equations : 
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and 



5 2  

where pma is defined by 

Q) 

cos ~ n y  = 1 p m a  sin mny; 
m-1 

i.e., 

( 4 . 4 )  

2/n[l/(m+I)+l/(m-.l)] if m f R  odd, 

0 if mfl  even, 
( 4 . 5 )  

and 

k+2 - (kk2)2+m2n2. 

The matrix eigenvalue approach is taken, in which the state 

of the system is represented by Q and the dynamics of the 

system are represented in the form 

If we write Q - Re ( q exp(-iwt)), then eq. ( 4 . 7 )  gives 

( A -  i w I )  9 - 0 .  - - 

Define potential vorticities 

( 4 . 8 )  
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Qkmn -(K2+F)ak,tn + F akQ(3-n), (4.9) 

for n=1,2. Then we can express the streamfunction amplitudes 

(4.10) 

where KpK2(K2+2F). Equations ( 4 . 3 )  can be rewritten in terms 

O f  the Qkal and Qk12: 
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I 
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where 

(4.12) 

Each equation in (4.11), representing one row of the matrix 

in eq. (4.8), is used to compute the matrix coefficients, and 

c'ne eigenvalues and eigerivectors ass~eiated v i t h  t h e  mitr ix  are 

found with standard eigenvalue solving mathematical subrou- 

tines. 

The coupling in (4.11) is between the zonal wavenumber k 

and e2k'. So the equations for odd k are decoupled from even 

k. For odd k, there is no coupling between a wavenumber pair 

(k,P) and ( l c k 2 , 1 ) ,  since p d  = 0. For even k this is also 

true, except that (-2,R), ( 0 , R )  and (2,1) are all coupled 

because pml did not enter into these equations. Then, eqs. 

(4.11) can be written for four collections of wavenumbers, each 

consisting of wavenumber pairs that are coupled, and which are 

totally decoupled from wavenumbers present in other collec- 

tions. We shall refer to these collections as set numbers 

1, . . . ,  4. By convention, sets 1 and 2 will have even zonal 

wavenumbers and sets 3 and 4 have odd zonal wavenumbers. Set 

number 1 has (k,R) =. (0,l) as a member, and set number 3 has 

(k,R) - (1,l) as a member. As an example, if the system of 



4.2 Growth Rate: 

The growth r a t e  is  decreased only s l i g h t l y  by the inclusion 

of topography for  the parameter ranges of i n t e r e s t .  For F-35, 

rl=r2 - 2 ,  the growth r a t e  is  decreased on the order of .04 

day-l as the topography height ho is  increased from 0 t o  10. 

We can define a function u(h0;wi) t o  be the shear U t ha t  yields  

a growth r a t e  o f  w i  f o r  a topography height ho. We f ind  tha t  u 

i s  approximately given by 
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Figure 4.1 The transition from wavenumber 4 to wavenumber 
5 as the dominant zonal wavenumber of the fastest-growing eig- 
enmode (solid line), and the marginal curve (dashed line), as 
functions of the shear Us and topography height ho,  for F = 35, 
U2 = .15 ,  p = 0, and rl = r2 = 1 . 5 .  The dominant meridional 
wavenumber is R = 1. 
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u(h0,Ui) = uo (1 + Q hO2)i 

where a is approximately .002. 

( 4 . 1 3 )  

Of greater importance are structural changes introduced by 

the topography. Near the minimum critical shear, the asymp- 

totic model showed long waves to be stabilized more than short 

waves (Fig. 3.6), and hence, for some parameter values the 

topography can give rise to an increased dominant wavenumber of 

the fastest growing mode. An increase in the zonal wavenumber 

as ho increases is suggested by Fig. 4 . 1  for O<h0<7; and for 

h0>7, the wavenumber decreases, but at this parameter setting, 

the wave is not unstable. 

4 . 3 .  Streamfunction: 

The relative amplitudes associated with the various wave- 

numbers for the most unstable eigenmode when F-35, ho = 5 ,  and 

rl=r2 = 2, is shown in Fig. 4 . 2 .  The dominant wavenumber is 

(k,R) - (5,l). The sidebands picked up by the asymptotic model 

are of wavenumbers 3 and 7. A wavenumber 1 effect that is not 

part of the asymptotic model solution is also present. In the 

lower layer, this wavenumber 1 component is larger than the 

wavenumber 3 component. 

Time series of the streamfunction field for the above 

choice of parameters are shown in Fig. 4 . 3 ,  where only half the 

zonal extent of the domain is shown. The streamfunction field 
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I 

amplitude 

R 

amplitude 
k 

Figure 4.2 The relative amplitudes of various Fourier 
components making up the most unstable eigenmode, for F=35, 
U2=.15, /3=0, ho = 5, and r1 = r2 = 1 . 5 .  
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trough ridge trough ridge trough I 
1 

upper lower 

Figure 4 . 3  The streamfunction 4: for layers n=1,2, 
computed for times wrt = 0 ,  7r/2, 7 r ,  and 37r/2, using the 
numerical model, for U2=.15, F=35, ho = 5, p=O, and r1 = r2 = 

1.5. Only the half of the domain -7r/21~17r/2 i s  shown. 
Topographic ridge and trough positions are shown at the top. 
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agrees very well with that obtained from the asymptotic model 

in Fig. 3.5. 

4.4 Effects of Truncation: 

First we consider the inviscid problem in which the Fourier 

expansion in eq. (4.1) is truncated to the zonal flow and the 

topography wavenumber. This is the simplest scenario in which 

we could address the question of whether a stationary wave 

might arise form the case of U2 equal to zero. A nontrivial 

solution to eqs (4.3) can be found by setting the determinant 

of the matrix of coefficients of the akin's equal to zero. The 

result is the following biquadratic equation: 

[u2+bI2 - c2u2 = 2 y [ w 2  +b+ac], 

where 

2 (B-UK') 
- 2 ( B  + Jw 

a - - 2 U +  - 
9 

K2 + F K2 + F 

4 ( B  - FU) ( B  - u K2> 
b -  9 

K2 ( K2 + 2 F) 

4 /3 (K2 + F) 

K2 (K2 + 2F) 
c = - 2 u +  9 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

and 
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m t  wave/zonal 

? I\- 

Figure 4 . 4  The right-hand side and the left-hand side of 
the dispersion relation, eq. (4.14).  The c u m e s  shown are for 
F-0 (solid), F-7 (dashed), E'-14 (dotted), and F-1000 (dot- 
dashed). 
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4 ho2 ( R2r2 + F) (K2 + F) 
7 =  

(R2.1r2 + 2F) K2 ( K2 + 2F) 
(4.18) 

Although w 2  is in general complex, the case of w 2  real 

gives us some insight into the nature of the solution. The 

left-hand side of eq. (4.3) is a parabola centered at 

(c2/2-b,c2(b-c2/4)) and the the right-hand side is a line of 

slope y passing through the point (-b-ac,O). A solution is 

obtained whenever the two sides of eq. (4.3), shown in Fig. 

4.4, are equal. If the line and parabola intersect, then there 

is a solution for real w 2 .  If u2 is positive, then we have a 

neutral eigensolution. If w 2  is negative, the solution will 

be pure imaginary; i.e., the perturbation is growing without an 

oscillatory behavior. If the line and parabola do not inter- 

sect, then the perturbation has a complex growth rate; i.e., it 

has a growing and an oscillatory behavior. 

In Fig. 4.4, we see that for F > 7, w 2  without topography 

is complex. The solution is a travelling baroclinic wave with 

k = +2. If F > 21, then as 7 increases, implying increasing ho, 

there are two critical values of y,namely yCl < yC2 such that 

for yCl < y < yC2 there are four neutral solutions, and for y 

> yc2 there are two neutral solutions and two non-oscillatory 

growing solutions. For 7 < F < 21, yc2 does not exist. For F 

less than 7, topography destabilizes neutral modes. The 

remaining discussion is for F > 2 1 .  
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lower 

trough ridge trough ridge trough 

- -- _ _ _ _  /-- 

Figure 4 . 5  As in Fig. 4 . 3 ,  except for the severely trun- 
cated problem (wavenumbers k = 2, 0, and - 2 ) ,  with r1 = r2 = 0 ,  
U2 = 0 ,  and ho = 2. 
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The streamfunction pattern for the case of 7 < rc., shown 

in Fig. 4.5, is a pattern of highs and lows travelling on a 

meandering path, as was the case of a baroclinic wave modified 

by topography presented in Figs. 3.5 and 4 . 3 .  In addition, 

Fig. 4.5 reveals an index cycle vacillation, due to the pres- 

ence of a zonal flow in the perturbation. At time wrt equal to 

0 (T), the flow has a high (low) zonal index. 

The case of 7 > 7,2, shown in Fig. 4 . 6 ,  is a stationary 

disturbance, with a ridge centered over (shortly upstream from) 

the topographic ridge in the lower (upper) layer. 

The above discussion concerns a severe truncation. Except 

for a restricted region in parameter space, viz. for relatively 

small F, the 2,0,-2 truncation does not yield the most unstable 

mode. Hence this mode may not be physically relevant, unless 

it dominates in a finite amplitude problem, as some less 

unstable modes do in Hart (1981) and Nathan (1985). The numer- 

ical eigenvalue problem was run for the viscous case to deter- 

mine if this mode arises at the parameter setting we have con- 

sidered. The critical topography height at which the topo- 

graphic instability for F-35 is equal to approximately 6 for 

the inviscid case, and increases for viscous cases. Hence it 

is more reasonable to assume that the stationary wave arises 

due to a nonzero lower layer basic state velocity, and not due 

to a topographic instability with a zero basic state lower 

ve loc i ty . 
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ridge trough 

_- -- -- -- - - -- 

Figure 4 .6  As in Fig. 4 . 5 ,  except for ho = 6, and only at 
time t = 0. 
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Table 4 .1  : Growth rates as a function of wavenumber for some 

selected topography heights, for two truncation levels. 

Truncation 1: 

ho : 

Dominant k: 1 

2 

3 

4 

5 

6 

7 

8 

kmax - 1 2 ’  &ax - 6: 
0 5 6 

.427 .216 .172 

.82  0 .0  .314(w,-O) 

1.14 .952 .896 

1 .36  1 .22  1.18 

1.45 1.36 1 .32  

1 .37  1 .33  1 . 3 1  

1 .03  1.05 1.05 

0.0 .29  .37 

Truncation 2: kmax = 4,=-2: 

ho : 0 5 6 

Dominant k: 2 . 82  0.0 .334(w,=O) 
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In table 4.1 is shown a plot of growth rate as a function 

of wavenumber for the inviscid dase with U2 - 0, for ho = 0, 5, 

and 6 ,  for kax - 12, lmax - 6 ,  for ho = 0, 5 ,  and 6 .  

Stabilization due to the topography occurred for all wavenum- 

bers, except near the short-wave cutoff and also with the nota- 

ble exception of wavenumber 2, which exhibits the topographic 

instability for ho 2 6 .  Hence the severely truncated scenario 

described above is present when the severe truncation is 

relaxed. 

The effect of truncation on the most unstable eigenvalue w 

for F = 35 and rl=-r2 = 1.5 were determined for kax - .ernax up to 
10. Results for ho - 5 are shown in Table 4 . 2 .  For fixed 

kax>8, it appears that I,,, - 6 is sufficient meridional 

resolution to determine the eigenvalue accurately. Also kax - 
8 appears to be sufficient zonal resolution. The appropriate 

value for kax, and to a lesser extent Rmax increase with 

increasing F, since the dominant wavenumber is a function of F 

as given in Chapter 3 .  The number of wavenumbers required in 

these results is not nearly as great as in Niehaus (1980) ,  who 

studied wave stability. One might suspect that the coupling of 

zonal harmonics in wave-stability problems would be stronger 

than in this problem, where imposed waves do not occur at lead- 

ing order. 

The change in growth rate, Awi, and frequency, Ao,, 

by topography were computed for the numerical model introduced 
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Table 4.2: The nondimensional growth rate as a function of 

modal truncation, for ho - 5, F - 3 5 ,  B - 0 ,  U2 - .15, and the 

r1 - r2 - 1.5. 

%ax 

4 

4 

6 

6 

a 

a 

10 

10 

Rmax 

2 

14 

1 8  

2 

14 

2 

14 

Growth rate 

.276 

.273 

.303 

.297 

.273 

.270 

,273 

.270 
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and compared with the asymptotic model. The percent discre- 

pancy en was computed using the following definition: 

where 

for the asymptotic model, and 

for the numerical model with bax - 10 and Rkax = n, and these 

results are plotted in Fig 4 .7 .  Most of these results are 
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i 
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Figure 4.7 The percent discrepancy E G r  (solid) and E6i 
(dashed), between the topographic effects on the frequency and 
growth, respectively, for /3-0, F-35, and r1 = r2 = 1.5, for 
various values of ho, where kax = 10. 
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almost identical to those obtained with hax = 8. The residual 

in the discrepancy as kax and I,,, go to infinity measures the 

error inherent in the small ho approximation used in the asymp- 

totic model. 

For the point in parameter space given in Fig. 4 . 7 ,  the two 

models much more in the growth rates Awi than in the 

frequency change Awr. Also we find the absolute value of Awr 

to be smaller than the absolute value Aui. This is not true 

when one looks at some other points in parameter space; e.g., 

F-20, shown in Table 4 . 3 .  In all the cases run, for ho less 

than or equal to 5 ,  we find the frequency to be increased by 

the presence of the topography. 

disagree 

Since +n(3) from the asymptotic model does not project onto 

the wavenumber of the leading order disturbance, one would 

expect the models to agree to order (ho/F)'. The errors appear 

to be of order (~o/F)~, due primarily to the fact that coupling 

terms due to the topography in the matrix in equation ( 4 . 7 )  

include a factor of 2 x 1 :  the factor of 2 from the x-derivative 

of the topography height, and x l  from the y-derivative of the 

wave streamfunction. The largest discrepancies occur when F is 

large, which means ho is large when ho/F is fixed. The ratios 

of some terms that do not depend on F; for example the compari- 

son between the advection and topography terms in the original 

formulation, might become important. 
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Table 4 . 3 :  The percent discrepancies e r  and e i  fo r  various 

values o f  F/r2 and F ,  with ho/F equal t o  . l ,  U 1  = 1, U2 - .15 .  

F F/r2 €2: €i 

20 20 6 .75  4.68 

40 20 3 . 1  11.1 

60 20 .05 i 5 . 4  

20 200 8 . 9 2  6 .09  

40 200 3 . 5 7  17 .08  

60 200 3 . 8 9  26.67 

4.5 Phase SDeed: 

I 

The dominant wavenumber, i . e . ,  the wavenumber k o f  the 

leading order solut ion,  can be used to define a phase speed; 

i . e . ,  

cy +/k 

The phase ve loc i ty  was found t o  be a f fec ted  only s l i gh t ly  by 

the topography, increasing on the order o f  a few per cent as 

the  topography is varied f rom 0 t o  5. 



V. CONCLUSIONS 

The observations of some features of the flow field in the 

atmosphere and in the annulus experiments of L.KP have been com- 

pared with results of a linear theory. Notably, the observa- 

tions indicate a tendency for a ridge to exist upstream of the 

topography due to the presence of a stationary wave forced by 

the interaction of the lower layer zonal flow and the topogra- 

phy - 
The transient disturbance involves a coupling of various 

zonal wavenumbers by the topography and the parameterized sta- 

tionary waves. When parameters are chosen appropriately for 

the atmosphere and the annulus, the fastest-growing eigenmode 

is a baroclinic wave, modulated by the topography, causing the 

eastward-travelling cyclones and anticyclones to meander along 

a sinusoidal path that is fixed in time. The cyclone and anti- 

cyclone centers reach their minimum latitude at about one-third 

of a topographic wavelength downstream from the ridge, and the 

maximum latitude one-sixth wavelength upstream. The phase of 

this path relative to the topography is in qualitative agree- 

ment with the observational results of Blackmon, et al. (1977) 

shown in Figure (1. lb) . 

The form of the transient disturbance is essentially the 

74 
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same for the cases of zero and nonzero lower layer basic state 

velocity. Hence the meandering wave is present for the case of 

no lower-layer velocity, but in this case the forced stationary 

wave is absent. 

The transient disturbance alone cannot capture much longi- 

tude dependence of the strength of cyclones and anticyclones. 

However, the sum of the stationary and transient disturbances 

yields a flow pattern characterized by a tendency toward high 

pressure shortiy upstream vf the topographic ridge azd Inw 

pressure shortly upstream of the topographic trough, which is 

in qualitative agreement with the observed results. 
t 

The eigenvalues obtained in this study show the topography 

to stabilize baroclinic waves except near the short-wave cutoff 

and to shift the maximum instability to shorter wavelengths for 

small topography. The eigenvalue changes are small, of order 

(ho/F) - 
The asymptotic and numerical model results agree to order 

(ho / F ) 3 .  Hence there is good agreement for moderately large 

ho, since F is large enough to keep ho/F small. Physically, 

large F implies that the length scale of the most unstable wave 

is much shorter that the wavenumber 2 topography; hence the 

magnitude of topographically-induced vertical motions on a bar- 

oclinic wave is smaller than for an equivalent problem with 

small F. One might suspect that the agreement should be of 

order (~o/F)~, based on the asymptotic model formulation. Some 
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further check on the magnitudes of the various terms might be 

required to verify this. 

If one truncates the Fourier expansion of the perturbation 

in the numerical model to include only the zonally-averaged 

flow and the zonal wavenumber of the topography, the inviscid 

dispersion relation reduces to a biquadratic which yields a 

topographically-modified baroclinic instability for small 

topography and a topographic instability, in which waves grow 

in situ, for large topography. For intermediate values of ho, 

the waves are neutrally stable. The eigenmodes obtained from 

this truncation were not the most unstable for the values of F 

relevant to the planetary-scale atmosphere. It remains to be 

seen if they might be important in a nonlinear model. 

This study can be extended in several ways. The stationary 

wave problem was arbitrarily simplified, in order to facilitate 

the analysis. There is a latitude-dependence of the stationary 

wave that was removed by parameterization. Inclusion of this 

additional y-structure would probably destroy the antisymmetry 

that leads to the meandering of the time-dependent solutions 

and that leads to an expectation of the vanishing of the phase 

oscillation of the wavenumber 2 component in the middle of the 

channel, a feature which is not observed in the experimental 

data. The results of LKP also suggest the possible presence of 

stationary wavenumber 4 and wavenumber 6 components. The solu- 
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tion of the time-independent equations should be extended to 

include these. 

It would be interesting to investigate the robustness of 

these conclusions in a nonlinear study. One question is 

whether one must specify the lower-layer velocity in the basic 

state. A nonlinear model is capable of generating a zonal flow 

correction. Nonlinear interactions could lead to the excita- 

tion of a topographic instability. It is desirable to see what 

sort of modes survive, their time evolution, and the types of 

final states which are present in various regions of parameter 

space. 
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APPENDIX A :  

ORTHOGONALITY CONDITION FOR ASYMPTOTIC MODEL 

The orthogonality condition will be presented for the case 

of U2 = 0 and U1 - U, but the result for general U2, to which 

the method readily extends, will also be stated. The leading 

order problem from eq. (3.1) can be written in terms of the 

lower-layer streamfunction; i.e. in the following form: 

with boundary conditions 

The solution to this problem was given in eqs. (3.4)-(3.5), and 

for U2 - 0 ,  it is given by 

where c+, c-, a', and a were defined in eqs ( 3 . 6 ) .  

The order ho/F problem is given by representing eqs. 
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(3 .10-3.11)  i n  the form 

w i t h  boundary conditions 

$ 2 ( l )  = I Q ( O ) $ ~ ( ~ )  + L2(1)$2(1) + 8Ll(O)[sin 2x $2(0)y]-0 

( A .  6) 

I n  order t o  f i nd  w ( ' ) ,  we apply the so lvabi l i ty  condition 

by multiplying ( A . 5 )  by the adjoint o f  ( A . 3 )  and integrat ing 

over the domain: 

where the superscript  + represents the adjoint .  

The adjoint  problem f o r  $2(') yie lds  

where $2(')+ - $2(O) - exp(ikx) s i n  ( h y )  and I ( o ) +  is  the same 

as  I(') except t ha t  the complex conjugate of w ( ' ) ,  denoted 

w ( O ) *  is used i n  place of 

The t h i r d  term is  zero since 



a2 

Ll(O)[sin 2x 74('),] = ( )exp(i(k+2)x) + ( )exp(i(k-2)x) 

and therefore the product of this and exp(-ikx) integrates 

over x to zero. The first term in Eq. ( A . 7 )  will be written 

( A .  10) 

The second term in Eq. ( A . 7  ) is evaluated using a Lagrange 

identity; i.e., 

(plus other terms which are zero when the b.c. are applied) 

(A .  11) 

But the remaining boundary term integrates to zero when 

L2(')$(l) is expressed in terms of $(O)  using the boundary 

condition 

4 
I 

and substituted into the right-hand side of (A.11). 

Also the second term on the left-hand side of ( A . 1 1 )  is 

zero, leaving 

I = 0 (A .  12) 



a3 

In general, I is nonzero, implying = 0. This 

implies also that L ( l )  - 0, and then (3.10-3.11) become a 

forced differential equation f o r  $2(l) in terms of $2(O): 

The solution $2(l) has the form 

t 

The O(ho/F)2 problem is written 

with boundary conditions 

i 
c 
! 
I 

I 

$2(') = L2(')$2(') + L2(1)$2(1) + 4Ll(')[sin 2X $2(0)y]-0 

( A .  16) 

At O(ho/F)2 the orthogonality condition on (A.15) yields 

1 2x 

0 0  
-4s ($p(O)+)*Ll(O)(sin 2x$2('),) dx dy. (A. 17) 

yielding 
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Y-1 

Y-0 
~ ( ~ 1 1  = I’ + 4~~1F(w(~)-Uk+irl) [cos lry (g2-y-g2+y)] 1 ,  

(A. 18) 

where the integral I is given by 

0 0  
( A .  19) 

and when R is odd, 

[ ( A )  a - 2 X  [p’+A2 (a(o) -Uk+iq) ] ( sin(X/2))/(R2x2 -A2). 
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For general U2, equation ( A . 1 8 )  becomes 

I - I' + I", 

where I' and I" are given by 

(A.  22) 

( A .  25) 



APPENDIX B: 

CALCULATION OF MERIDIONAL STRUCTURE COEFFICIENTS 

The functions g2f are given in eqs. (3.17) and ars 

repeated here : 

First the coefficients a5f are found by the method of 

undetermined coefficients; i.e., we write a particular solution 

of eq. (3.14) in the form 
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These are substituted into the boundary conditions (3.15) 

to obtain, in the case of g2+, 

al+cos(&/2) - a2+sin(X++/2) 

- a3+cos(X+-/2) - aq+sin(X+-/2) + a5+ = 0, 

t 

I 

If R is odd, the sum (B.5)+(B.6) and the sum (B.7)+(B.8) 

yield only the trivial solution for al+ and a3+. Then eqs. 

(B.5) and (B.7) are solved simultaneously to yield 

c“ a- 



a4+ ( ~ + + 2 - ~ + _ 2 )  sin(~+_/2) - a5+(~++2-.t~n~) -a5+. 

If R is even, the difference (B.5)-(B.6) and the difference 

(B.7)-(B.8) yield only the trivial solution for a2+ and a&+. 

Then eqs. (B.5) and (B.7) are solved simultaneously to yield 

a3+ ( X + + ~ - X + _ ~ )  cos(X+_/2) - a5+(R2n2-X++2)+a5+. 
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governing parameters. The simultaneous presence of a stationary forced wave of 
wavenumber 2 and a time-dependent baroclinic wave of wavenumber 4, which has wave- 
number 2 and 6 sidebands due to the topography, yields a flow field that exhibits some 
principal features of the laboratory experiments. The position of the forced wave 
and the location of an excursion in latitude of the storm track show qualitative 
resemblance to those features observed in the atmosphere. 

Agreement is good between the two approaches. 
Recent laboratory experiments by Li, Kung, and Pfeffer, with a baroclinic annulus 
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